Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 9(8): e104364, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25089620

RESUMO

Long-term memory (LTM) formation requires new protein synthesis and new gene expression. Based on our work in Aplysia, we hypothesized that the rRNA genes, stimulation-dependent targets of the enzyme Poly(ADP-ribose) polymerase-1 (PARP-1), are primary effectors of the activity-dependent changes in synaptic function that maintain synaptic plasticity and memory. Using electrophysiology, immunohistochemistry, pharmacology and molecular biology techniques, we show here, for the first time, that the maintenance of forskolin-induced late-phase long-term potentiation (L-LTP) in mouse hippocampal slices requires nucleolar integrity and the expression of new rRNAs. The activity-dependent upregulation of rRNA, as well as L-LTP expression, are poly(ADP-ribosyl)ation (PAR) dependent and accompanied by an increase in nuclear PARP-1 and Poly(ADP) ribose molecules (pADPr) after forskolin stimulation. The upregulation of PARP-1 and pADPr is regulated by Protein kinase A (PKA) and extracellular signal-regulated kinase (ERK)--two kinases strongly associated with long-term plasticity and learning and memory. Selective inhibition of RNA Polymerase I (Pol I), responsible for the synthesis of precursor rRNA, results in the segmentation of nucleoli, the exclusion of PARP-1 from functional nucleolar compartments and disrupted L-LTP maintenance. Taken as a whole, these results suggest that new rRNAs (28S, 18S, and 5.8S ribosomal components)--hence, new ribosomes and nucleoli integrity--are required for the maintenance of long-term synaptic plasticity. This provides a mechanistic link between stimulation-dependent gene expression and the new protein synthesis known to be required for memory consolidation.


Assuntos
Potenciação de Longa Duração/genética , Memória de Longo Prazo/fisiologia , Plasticidade Neuronal/genética , Poli(ADP-Ribose) Polimerases/biossíntese , Sinapses/genética , Animais , Colforsina/administração & dosagem , Proteínas Quinases Dependentes de AMP Cíclico/biossíntese , Proteínas Quinases Dependentes de AMP Cíclico/genética , Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Plasticidade Neuronal/fisiologia , Poli(ADP-Ribose) Polimerase-1 , Poli Adenosina Difosfato Ribose/biossíntese , Poli Adenosina Difosfato Ribose/genética , Poli(ADP-Ribose) Polimerases/genética , RNA Ribossômico 28S/biossíntese , RNA Ribossômico 28S/genética , Sinapses/fisiologia
2.
Hippocampus ; 22(7): 1501-7, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22378468

RESUMO

The persistent activity of protein kinase Mzeta (PKMζ), a brain-specific, constitutively active protein kinase C isoform, maintains synaptic long-term potentiation (LTP). Structural remodeling of the postsynaptic density is believed to contribute to the expression of LTP. We therefore examined the role of PKMζ in reconfiguring PSD-95, the major postsynaptic scaffolding protein at excitatory synapses. In primary cultures of hippocampal neurons, PKMζ activity was critical for increasing the size of PSD-95 clusters during chemical LTP (cLTP). Increasing PKMζ activity by overexpressing the kinase in hippocampal neurons was sufficient to increase PSD-95 cluster size, spine size, and postsynaptic AMPAR subunit GluA2. Overexpression of an inactive mutant of PKMζ did not increase PSD-95 clustering, and applications of the ζ-pseudosubstrate inhibitor ZIP reversed the PKMζ-mediated increases in PSD-95 clustering, indicating that the activity of PKMζ is necessary to induce and maintain the increased size of PSD-95 clusters. Thus the persistent activity of PKMζ is both necessary and sufficient for maintaining increases of PSD-95 clusters, providing a unified mechanism for long-term functional and structural modifications of synapses.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/citologia , Proteína Quinase C/metabolismo , Sinapses/metabolismo , Análise de Variância , Animais , Células Cultivadas , Colforsina/farmacologia , Proteína 4 Homóloga a Disks-Large , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Potenciação de Longa Duração/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Proteína Quinase C/genética , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Sinapses/efeitos dos fármacos , Transfecção
3.
J Virol ; 81(20): 10981-90, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17670839

RESUMO

Murine hepatitis virus (MHV) and severe acute respiratory syndrome (SARS) coronavirus (CoV) are two of the best-studied representatives of the family Coronaviridae. During CoV infection, numerous cytokines and chemokines are induced in vitro and in vivo. Human interleukin 8 and its mouse functional counterpart, CXCL2, are early-expressed chemokines. Here we show that SARS-CoV and MHV induce endoplasmic reticulum (ER) stress and Cxcl2 mRNA transcription during infection in vitro. Expression of the viral spike protein significantly induced ER stress and Cxcl2 mRNA upregulation, while expression of the other structural genes did not. Additional experiments with UV-inactivated virus, cell-cell fusion-blocking antibodies, and an MHV mutant with a defect in spike protein maturation demonstrated that spike-host interactions in the ER are responsible for the induction of ER stress and subsequent Cxcl2 mRNA transcription. Despite significant increases in levels of Cxcl2 mRNA and functional nucleus-to-cytoplasm RNA transport, no CXCL2 protein was released into the medium from MHV-infected cells. Yet Sendai virus-infected cells showed substantial Cxcl2 mRNA induction and a simultaneous increase in levels of secreted CXCL2 protein. Our results demonstrate that expression of CoV spike proteins induces ER stress, which could subsequently trigger innate immune responses. However, at that point in infection, translation of host mRNA is already severely reduced in infected cells, preventing the synthesis of CXCL2 and ER stress proteins despite their increased mRNA concentrations.


Assuntos
Quimiocina CXCL2/genética , Retículo Endoplasmático/virologia , Glicoproteínas de Membrana/fisiologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Proteínas do Envelope Viral/fisiologia , Animais , Linhagem Celular , Quimiocinas/genética , Retículo Endoplasmático/patologia , Camundongos , Vírus da Hepatite Murina/patogenicidade , RNA Mensageiro/análise , Glicoproteína da Espícula de Coronavírus , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...